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't’s a great time to build tech for the brain
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Obama Seeking to Boost Study of Human Brain Bringing a Virtual Brain to Life
By JOHN MARKOFF By TIM REQUARTH
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The Obama administration is planning a decade-long scientific For months, Henrv Markram and his team had been feeding data

effort to examine the workings of the human brain and build a W TWITTER into a supercomputer, four vending-machine-size black boxes
comprehensive map of its activity, seeking to do for the brain what g .. .. whirring quietly in the basement of the Swiss Federal Institute of
the Human Genome Project did for genetics. — Technology in Lausanne.

By JOHN MARKOFF
Published: February 25, 2013 | B 105 Comments

In setting the nation on a course to map the active human brain,
President Obama may have picked a challenge even more daunting
than ending the war in Afghanistan or finding common ground

with his Republican opponents.

But the leap to the human brain is so enormous that one of the scientists who has
participated in planning sessions, the neuroscientist Terrv Sejnowski from the Salk
Institute, has called the challenge “the million neuron march.”




Can you record from every neuron in the mouse brain?
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(Swbmitted on 24 Jun 2013 (v1), last revised 4 Sep 2013 (this version, vE))
Simultaneously measuring the activities of all neurons in @ mammalian brain at millisecond resolution is a challenge beyond the limits of existing technigues in neuroscience. Entirely new approaches may be required. motivating an analysis of the

fundamental physical constraints on the problem. We outline the physical principles governing brain activity mapping using optical. electrical magnetic resonance. and molecular modalities of neural recording. Focusing on the mouse brain, we analyze the
scalability of each method, concentrating on the limitations imposed by spatiotemporal resolution. energy dissipation. and volume displacement. We also study the physics of powering and communicating with microscale devices embedded in brain tissue.

Subjects: Neurons and Cognition (q-bio.NC): Biological Physics (physics bio-ph)
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Neural Dust: An Ultrasonic, Low Power Sclution for Chronic Brain-Machine Interfaces

Dongjin Seo, Jose M. Carmena, Jan M. Rabaey, Elad Alon, Michel M. Maharbiz
(Submitted on & Jul 2013)

A major hurdle in brain-machine interfaces (BMI) is the lack of an implantable neural interface system that remains viable for a lifetime. This paper explores the fundamental system design trade-offs and ultimate size. power. and bandwidth scaling limits of
neural recording systems built from low-power CMOS circuitry coupled with ultrasonic power delivery and backscatter communication. In particular, we propose an ultra-miniature as well as extremely compliant system that enables massive scaling in the
number of neural recordings from the brain while providing a path towards truly chronic BMI. These goals are achieved via two fundamental technelogy innovations: 1) thousands of 10 - 100 \mu m scale, free-floating. independent sensor nodes. or neural
dust, that detect and report local extracellular electrophysiological data, and 2) a sub-cranial interrogator that establishes power and communication links with the neural dust.

Subjects: Meurons and Cognition (q-bio.NC): Instrumentation and Detectors (physics ins-det}
Cite as:  arXiv:1307.2196 [q-bio.NC]
{or arXiv:1307.2196v1 [q-bio.NC] for this version)

http://arxiv.org/abs/1307.2196
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Neurons...  and action potentials
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Intracellular vs. Extracellular Recordings
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Neurons are organized in the cortex

Cell type-specific 3D reconstruction of five
neighboring barrel columns in rat vibrissal

but debate exists: functional? anatomical? canonical? cortex



Recording electrical signals from the brain...

Local F.P

Single Unit A.P.




e ‘see’ the signal you want: spikes, multi-unit or LFP
e ‘see’ as many neurons as possible
* long recording lifetime

e biocompatibility
e complex term
* minimize the harm the brain does to the electrodes
* minimize the harm the electrode do to the brain

* minimize chances of infection
* minimize insertion damage

e ideally, allow awake, untethered behavior



Penetrating into the cortex

(top) Utah array; (left) from
Rothschild, Front. Neuroeng., 15
October 2010; (bottom) Duke
array
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Figure 1. Process flow schematic for the nanofabrication of 64 -

channel silicon neural probes.
doi:10.1371 journal.pone.0026204.001
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Physical Interface Platforms Across
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Brain-Machine Interfaces Vision

Seamless integration between human
“brain” and electronics “brain”

= Learn about how the brain operates

= Assist motor control for spinal cord
injuries/amputees
= Estimated population (US) = 200,000
= 11,000 new cases in the US every year

= Qverall human enhancement

[from Scientific American]



Brain-Machine Interface Paradigm
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Fundamental limits in scaling
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[Mark VLSI 2011]
Today’s systems
Bulky, invasive, wired, low-density
Moving towards wireless but
It's all about size & energy Smallest front end published: 250 x 450 pm?
Scaling limited due to shank size Lowest Power: 2.5 yW/chan

[Biederman 2013]



Active Implementation: CMOS Limit
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 Smallest CMOS neural front-end system
 No rectifiers and modulators
e Occupies ~100 um? of silicon
e Scaling of CMOS with same functionality is challenging



RF|

Two fundamental issues:

e A

D to the brain?
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ND Side Dimension (um)

small form factor (volume) + speed of light 2 f, = 10’s GHz
e Significant tissue loss at such high frequency

e Output power limit due to safety regulations: 10 m\W/cm?

(ap) Aosuaroiy3a yur 3

e.g. 1 mm? interrogator, 100 um dust node, 2 mm distance = received power < 40 p\W << 2.5 pW for CMOS



A Neural Dust system

External transceiver\
- long range transmitter

- trans-cranial comm
- ASIC / memory

- data processing

- battery

Sub-dural transceiver \

- ultrasound transceiver
to neural dust

Skull

- transcranial transceiver for
external comm

Kpolymer encapsulant ‘/

g
Dura

‘ Neural dust

polymer encapsulation
hY

recording sites

-] CMOS front end —&
Cortex ; T
2|

PIBZO yrive electrodey

Seo D, et al. “Neural Dust: An Ultrasonic, Low Power Solution for Chronic Brain-Machine Interfaces,” arXiv, Jul. 2013
Seo D, et al. “In Vitro Characterization of Untethered, Ultrasonic Neural Dust Motes for Cortical Recording,” submitted



Tissue
Inside the skull

Carrier

Layer Legend

[ 1 Electrode
[ 1] Piezo

Interrogator Neural Dust

the interrogator couples ultrasound energy to the motes

the interrogator can perform both spatial and frequency discrimination with sufficient
bandwidth/resolution to interrogate each mote

each mote consists of a piezoelectric transducer, surface electrodes for electrophysiological
signal acquisition, and a silicon CMOS die containing electronics for signal
amplification/conversion.

The mote reports recorded signals back to the interrogator by reflecting and modulating the
amplitude, frequency, and/or phase of the impinging ultrasound wave.



Ultrasound coupling to motes

1 - —_
E 2mm transmission distance ~ 70% efficiency
X ~ 40% efficiency
0.1
>
7]
c
2
°
=
11
X
£ 0.01}
3 3
1 y (2) @ 0.1mm = Ultrasound (1mm TX)
x( ) i < —
. EM (10mm TX)
1E-3 & T e
0.1 1 10

RX Dimension (mm)

* Low acoustic velocity allows operation at a much lower frequency
e eg A=150um @ 10 MHzUS vs. A=5mm @ 10 GHz EM

e The acoustic loss is smaller than EM loss
e Safety regulation (10 mW/cm? for EM vs. 720 m\W/cm? for US)

[Attenuation of ultrasound in brain is ~0.5 dB/(cmMHz) and bone is ~22 dB/(cmMH:z).
Peripheral tissues are somewhere in between.



Piezoelectric XDCR
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e XDCR model using 3-port network, based on KLM model
(1970)

 Both electrical and mechanical resonances
e Determined by the thickness of the XDCR
e Aspect ratio: Interrogator (10:10:1), neural dust (1:1:1) for density




Model Limitation: Beam Spreading

MO T norma lized p0 near- field (Calculated with FMM at 2 =2 mm)

Interrogator

" Tissue Depth (d =2 mm) 2 45 4 05 0 05 1 15 2

% (mm)

0 1 2 3 4 ] B
2

Depth (mm) Rayleigh Distance = %

3D loss mechanism: beam spreading modeled as loss

 Neural dust placed at interrogator’s Rayleigh distance
e |nterrogator sized (1 mm?) to match its Rayleigh distance (natural
focus) with tissue transmission distance (d =2 mm) @ 10 MHz
. Fean)w steering to enable multi-node interrogation (more
ater



BaT|O3 Cube Thickness Resonance mode (z)

10" : : : : : Simulation Result:
Energy in x e @I15MHz (1% resonance)
Energy iny —
10"} Energy in z |] Eu/Erorar = 16'62/)
E,/Eqora = 16.6%
10-16 i Ez/EtotaI = 66.8%
e @22.6MHz (2" resonance)
-18
10 i Ex/EtotaI = 21.0%
E,/Ecora = 20.2%
-20 , , . . ; E./E = 58.8%
10 15 2 25 3 35 4 /ot ’
freq (Hz) x 10’

Re-radiation along two perpendicular axes due to Poisson’s
ratio

e COMSOL simulation: >66% of the energy kept in the main thickness
resonance mode

e Modeled as additional loss



Sub-Dural Link Model

Inside the skull
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e TX (interrogator) and RX (neural dust) modeled with KLM
e Match resonant frequency to maximize power transfer

e 2 mm tissue as a lossy transmission line
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Scaling indicates reception of 3.5 uW (> 2.5 uW) at 20 um node

Mechanical matching with A/4 layer can improve efficiency
e Attenuation of the layer (16 dB/cm-MHz) limits the improvement



Scaling: Electrode Modeling
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Randles Model for Electrode

\ [Du PLoS 2011]

e Electrode has thermal noise
* Electrode |Z]| density: C, ~ 0.5 pF/um?, R, = 18.65 MQ-um?

* \oltages are measured differentially

* Neural dust: reference electrode on the same footprint
e e.g.,, measured signal amplitude for d = 100 pm is ~10 pV [Du 2011]



Scaling of the mote

1
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ND Side Dimension (pm)
e Captured power decreases with mote size

e Extracellular recording is differential, so signal decreases with size
* smaller motes need more power to maintain same SNR

e Fundamental electrode thermal noise

Scaling with an SNR of 10 dB shows operation down to 50 um
Can exceed FDA safety regulation, but scaling is ultimately limited by electrode thermal noise



Passive Implementation Scaling

e Area Limit

Max. effective width of
the FET on the available
footprint

e Noise Limit

FET width to support
min. l,s necessary to
achieve a certain input
referred voltage noise

e Power Limit

Delivered power needed
to operate the FET
reliably (Vps)
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How do you build the front end?

Comm Data Acquisition
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Transducer Power Management

Simplified neural front-end with a single FET sensor
e Electrical load impedance (FET) varies with
e |nstantaneous ultrasonic wave reflectivity changes
e Backscattered wave is modified
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(a) Measured power transfer
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For each mote dimension, both
(b) the impedance
spectroscopy and

(c) frequency response of
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reinforces the reliability of the
simulation framework.



Re-design of Neural Dust: Tail

polymer encapsulation poly/mer tail
A\
recording sites TN;\\
CMOS front end \'| distant
M electrode
piezo — H -
drive electrodes — -

e Scaling of both active and passive limited by the noise requirement
e ~1-5pm wide “tails” placing ref electrode(s) ~100 um from the base
* Flexible and ultra-compliant substrate

* Decoupling the interplay between size of the implant and the achievable
input SNR




Sensitivity (ppm)
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Simulated backscatter sensitivity scaling plot for various impedance levels.



Interrogating Multiple Neural Dusts?

Directional sensitivity of a transducer \
w [ Ta T T

Normalized power [dB]
| 1 1

-1

0.5 0 0.5

-0. . 1
vertical offset (y-coordinate in millimeter)

|
2l | Neural Dusts

0 1 2
Depth (mm)

* In collaboration with Dr. Alexander Bertrand (KU Leuven)

e Single transducer interrogator (1 mm) is quite directive
e Signal reception at neural dust nodes is unequal

e \Want to maximize power transfer & reflectivity at each
neural dust




Interrogating Many NDs
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* from www.labbookpages.co.uk

e Beamform to maximize power transfer to every node

e [f the total aperture is 1Imm, then same Rayleigh distance (d = D?/4A)
e e.g., 10 x 0.1mm transducers in total distributed over a 1mm interrogator

e Simulations under 2D simplification & assume sequential
interrogation




 Many opportunities and challenges as we miniaturize hardware
and move into organisms!

o “Extreme” miniaturization / ultra-low power / new sensors will
create entire new opportunities in neural applications

e Exciting times!



Thanks!

Questions?



Passive Implementation

Comm Data Acquisition
e Tt 1
| Il N "’: : In
I ‘Madulamr ADC A}
== I
I_ __I_ S | R _T_ _
F————— e
R s
Il
- I "‘ “' References | |
: I: 1 Rectifier Regulator | |
e Bias Gen
| Il “' ‘ |
o | I |
N 1 T |
Transducer Power Management

e Simplified neural front-end with a single FET sensor
1. Electrical load impedance (FET) varies with
2. Instantaneous ultrasonic wave reflectivity changes
3. Backscattered wave is modified



Passive Implementation

Comm Data Acquisition
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Transducer Power Management

e Harvested V. of the FET swings both positive and negative
e Careful not to forward-bias source/drain to body diodes

e Design considerations:
° R,&C,., filtering: f;, > 10kHz (BW of ), fip <10 MHz (v )
* FET sized to maximize reflectivity
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